Solitary wave of ground state type for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory in R
In this paper we prove the existence of nontrivial ground state solution for a nonlinear Klein–Gordon equation coupled with Born–Infeld theory in R2 involving unbounded or decaying radial potentials. The approach involves variational methods combined with a Trudinger–Moser type inequality and a symm...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciaegyenlet, Klein-Gordon egyenlet, Born-Infeld elmélet, Trudinger-Moser egyenlőtlenség, Mountain-Pass tétel |
doi: | 10.14232/ejqtde.2020.1.12 |
Online Access: | http://acta.bibl.u-szeged.hu/69516 |
LEADER | 01266nas a2200217 i 4500 | ||
---|---|---|---|
001 | acta69516 | ||
005 | 20211020135204.0 | ||
008 | 200608s2020 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2020.1.12 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Albuquerque Francisco S. B. | |
245 | 1 | 0 | |a Solitary wave of ground state type for a nonlinear Klein-Gordon equation coupled with Born-Infeld theory in R |h [elektronikus dokumentum] / |c Albuquerque Francisco S. B. |
260 | |c 2020 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a In this paper we prove the existence of nontrivial ground state solution for a nonlinear Klein–Gordon equation coupled with Born–Infeld theory in R2 involving unbounded or decaying radial potentials. The approach involves variational methods combined with a Trudinger–Moser type inequality and a symmetric criticality type result. | |
695 | |a Differenciaegyenlet, Klein-Gordon egyenlet, Born-Infeld elmélet, Trudinger-Moser egyenlőtlenség, Mountain-Pass tétel | ||
700 | 0 | 1 | |a Chen Shang-Jie |e aut |
700 | 0 | 1 | |a Li Lin |e aut |
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/69516/1/ejqtde_2020_012.pdf |z Dokumentum-elérés |