Strong solutions to the nonhomogeneous Boussinesq equations for magnetohydrodynamics convection without thermal diffusion
We are concerned with the Cauchy problem of nonhomogeneous Boussinesq equations for magnetohydrodynamics convection in R2 . We show that there exists a unique local strong solution provided the initial density, the magnetic field, and the initial temperature decrease at infinity sufficiently quickly...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Folyóirat |
Megjelent: |
2020
|
Sorozat: | Electronic journal of qualitative theory of differential equations
|
Kulcsszavak: | Differenciálegyenlet |
doi: | 10.14232/ejqtde.2020.1.24 |
Online Access: | http://acta.bibl.u-szeged.hu/69528 |
LEADER | 01152nas a2200193 i 4500 | ||
---|---|---|---|
001 | acta69528 | ||
005 | 20211020135209.0 | ||
008 | 200608s2020 hu o 0|| zxx d | ||
022 | |a 1417-3875 | ||
024 | 7 | |a 10.14232/ejqtde.2020.1.24 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a zxx | ||
100 | 1 | |a Zhong Xin | |
245 | 1 | 0 | |a Strong solutions to the nonhomogeneous Boussinesq equations for magnetohydrodynamics convection without thermal diffusion |h [elektronikus dokumentum] / |c Zhong Xin |
260 | |c 2020 | ||
490 | 0 | |a Electronic journal of qualitative theory of differential equations | |
520 | 3 | |a We are concerned with the Cauchy problem of nonhomogeneous Boussinesq equations for magnetohydrodynamics convection in R2 . We show that there exists a unique local strong solution provided the initial density, the magnetic field, and the initial temperature decrease at infinity sufficiently quickly. In particular, the initial data can be arbitrarily large and the initial density may contain vacuum states. | |
695 | |a Differenciálegyenlet | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/69528/1/ejqtde_2020_024.pdf |z Dokumentum-elérés |