Strong solutions to the nonhomogeneous Boussinesq equations for magnetohydrodynamics convection without thermal diffusion

We are concerned with the Cauchy problem of nonhomogeneous Boussinesq equations for magnetohydrodynamics convection in R2 . We show that there exists a unique local strong solution provided the initial density, the magnetic field, and the initial temperature decrease at infinity sufficiently quickly...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Zhong Xin
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Differenciálegyenlet
doi:10.14232/ejqtde.2020.1.24

Online Access:http://acta.bibl.u-szeged.hu/69528
LEADER 01152nas a2200193 i 4500
001 acta69528
005 20211020135209.0
008 200608s2020 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.24  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Zhong Xin 
245 1 0 |a Strong solutions to the nonhomogeneous Boussinesq equations for magnetohydrodynamics convection without thermal diffusion  |h [elektronikus dokumentum] /  |c  Zhong Xin 
260 |c 2020 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a We are concerned with the Cauchy problem of nonhomogeneous Boussinesq equations for magnetohydrodynamics convection in R2 . We show that there exists a unique local strong solution provided the initial density, the magnetic field, and the initial temperature decrease at infinity sufficiently quickly. In particular, the initial data can be arbitrarily large and the initial density may contain vacuum states. 
695 |a Differenciálegyenlet 
856 4 0 |u http://acta.bibl.u-szeged.hu/69528/1/ejqtde_2020_024.pdf  |z Dokumentum-elérés