Ground state solutions for nonlinearly coupled systems of Choquard type with lower critical exponent

In this paper, we study the existence of ground state solutions for the following nonlinearly coupled systems of Choquard type with lower critical exponent by variational methods −∆u + V(x)u = (Iα ∗ |u| N +1 )|u| N −1u + p|u| p−2u|υ| q , in RN, −∆υ + V(x)υ = (Iα ∗ |υ| N +1 N −1 υ + q|υ| q−2 υ|u| p ,...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Li Anran
Wang Peiting
Wei Chongqing
Dokumentumtípus: Folyóirat
Megjelent: 2020
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Choquard típusú egyenlet
doi:10.14232/ejqtde.2020.1.56

Online Access:http://acta.bibl.u-szeged.hu/70940
LEADER 01555nas a2200217 i 4500
001 acta70940
005 20211020135206.0
008 201130s2020 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2020.1.56  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Li Anran 
245 1 0 |a Ground state solutions for nonlinearly coupled systems of Choquard type with lower critical exponent  |h [elektronikus dokumentum] /  |c  Li Anran 
260 |c 2020 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a In this paper, we study the existence of ground state solutions for the following nonlinearly coupled systems of Choquard type with lower critical exponent by variational methods −∆u + V(x)u = (Iα ∗ |u| N +1 )|u| N −1u + p|u| p−2u|υ| q , in RN, −∆υ + V(x)υ = (Iα ∗ |υ| N +1 N −1 υ + q|υ| q−2 υ|u| p , in RN. Where N ≥ 3, α ∈ (0, N), Iα is the Riesz potential, p, q ∈ 1, q N N−2 and N p + (N + 2)q < 2N + 4, N+α N is the lower critical exponent in the sense of Hardy– Littlewood–Sobolev inequality and V ∈ C(RN,(0, ∞)) is a bounded potential function. As far as we have known, little research has been done on this type of coupled systems up to now. Our research is a promotion and supplement to previous research. 
695 |a Choquard típusú egyenlet 
700 0 1 |a Wang Peiting  |e aut 
700 0 1 |a Wei Chongqing  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/70940/1/ejqtde_2020_056.pdf  |z Dokumentum-elérés