Class p-wA(s, t) operators and invariant subspaces

In this paper we prove that if T ∈ B(H) is a pure class p-wA(s, t) operator (0 < s, t, s + t = 1 and 0 < p ≤ 1) with dense range such that 0 ∈/ σp(T), then T has a non-trivial invariant subspace if and only if its second generalized Aluthge transformation T˜(s, t) has a non-trivial invariant s...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerző: Prasad T.
Dokumentumtípus: Cikk
Megjelent: 2020
Sorozat:Acta scientiarum mathematicarum 86 No. 3-4
Kulcsszavak:Matematika
doi:10.14232/actasm-020-775-8

Online Access:http://acta.bibl.u-szeged.hu/73910
LEADER 01093nab a2200205 i 4500
001 acta73910
005 20211115144814.0
008 211115s2020 hu o 0|| eng d
022 |a 2064-8316 
024 7 |a 10.14232/actasm-020-775-8  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 1 |a Prasad T. 
245 1 0 |a Class p-wA(s, t) operators and invariant subspaces  |h [elektronikus dokumentum] /  |c  Prasad T. 
260 |c 2020 
300 |a 671-679 
490 0 |a Acta scientiarum mathematicarum  |v 86 No. 3-4 
520 3 |a In this paper we prove that if T ∈ B(H) is a pure class p-wA(s, t) operator (0 < s, t, s + t = 1 and 0 < p ≤ 1) with dense range such that 0 ∈/ σp(T), then T has a non-trivial invariant subspace if and only if its second generalized Aluthge transformation T˜(s, t) has a non-trivial invariant subspace. Further, we study some conditions for class p-wA(s, t) operators to have a non-trivial invariant subspace. 
695 |a Matematika 
856 4 0 |u http://acta.bibl.u-szeged.hu/73910/1/math_086_numb_003-004_671-679.pdf  |z Dokumentum-elérés