Class p-wA(s, t) operators and invariant subspaces
In this paper we prove that if T ∈ B(H) is a pure class p-wA(s, t) operator (0 < s, t, s + t = 1 and 0 < p ≤ 1) with dense range such that 0 ∈/ σp(T), then T has a non-trivial invariant subspace if and only if its second generalized Aluthge transformation T˜(s, t) has a non-trivial invariant s...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2020
|
Sorozat: | Acta scientiarum mathematicarum
86 No. 3-4 |
Kulcsszavak: | Matematika |
doi: | 10.14232/actasm-020-775-8 |
Online Access: | http://acta.bibl.u-szeged.hu/73910 |
LEADER | 01093nab a2200205 i 4500 | ||
---|---|---|---|
001 | acta73910 | ||
005 | 20211115144814.0 | ||
008 | 211115s2020 hu o 0|| eng d | ||
022 | |a 2064-8316 | ||
024 | 7 | |a 10.14232/actasm-020-775-8 |2 doi | |
040 | |a SZTE Egyetemi Kiadványok Repozitórium |b hun | ||
041 | |a eng | ||
100 | 1 | |a Prasad T. | |
245 | 1 | 0 | |a Class p-wA(s, t) operators and invariant subspaces |h [elektronikus dokumentum] / |c Prasad T. |
260 | |c 2020 | ||
300 | |a 671-679 | ||
490 | 0 | |a Acta scientiarum mathematicarum |v 86 No. 3-4 | |
520 | 3 | |a In this paper we prove that if T ∈ B(H) is a pure class p-wA(s, t) operator (0 < s, t, s + t = 1 and 0 < p ≤ 1) with dense range such that 0 ∈/ σp(T), then T has a non-trivial invariant subspace if and only if its second generalized Aluthge transformation T˜(s, t) has a non-trivial invariant subspace. Further, we study some conditions for class p-wA(s, t) operators to have a non-trivial invariant subspace. | |
695 | |a Matematika | ||
856 | 4 | 0 | |u http://acta.bibl.u-szeged.hu/73910/1/math_086_numb_003-004_671-679.pdf |z Dokumentum-elérés |