Single and combined algorithms for open set classification on image datasets

Generally, classification models have closed nature, and they are constrained by the number of classes in the training data. Hence, classifying "unknown" - OOD (out-of-distribution) - samples is challenging, especially in the so called "open set" problem. We propose and investiga...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Al-Shouha Modafar
Szűcs Gábor
Dokumentumtípus: Cikk
Megjelent: University of Szeged, Institute of Informatics Szeged 2024
Sorozat:Acta cybernetica 26 No. 3
Kulcsszavak:Bináris osztályozás, Többosztályos osztályozás, Adattudomány, Algoritmus
Tárgyszavak:
doi:10.14232/actacyb.298356

Online Access:http://acta.bibl.u-szeged.hu/86976
LEADER 01793nab a2200241 i 4500
001 acta86976
005 20250415145740.0
008 250415s2024 hu o 000 eng d
022 |a 2676-993X 
024 7 |a 10.14232/actacyb.298356  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a eng 
100 2 |a Al-Shouha Modafar 
245 1 0 |a Single and combined algorithms for open set classification on image datasets  |h [elektronikus dokumentum] /  |c  Al-Shouha Modafar 
260 |a University of Szeged, Institute of Informatics  |b Szeged  |c 2024 
300 |a 297-322 
490 0 |a Acta cybernetica  |v 26 No. 3 
520 3 |a Generally, classification models have closed nature, and they are constrained by the number of classes in the training data. Hence, classifying "unknown" - OOD (out-of-distribution) - samples is challenging, especially in the so called "open set" problem. We propose and investigate different solutions - single and combined algorithms - to tackle this task, where we use and expand a K-classifier to be able to identify K+1 classes. They do not require any retraining or modification on the K-classifier architecture. We show their strengths when avoiding type I or type II errors is fundamental. We also present a mathematical representation for the task to estimate the K+1 classification accuracy, and an inequality that defines its boundaries. Additionally, we introduce a formula to calculate the exact K+1 classification accuracy. 
650 4 |a Természettudományok 
650 4 |a Számítás- és információtudomány 
695 |a Bináris osztályozás, Többosztályos osztályozás, Adattudomány, Algoritmus 
700 0 1 |a Szűcs Gábor  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/86976/1/cybernetica_026_numb_003_297-322.pdf  |z Dokumentum-elérés