Strengthened volume inequalities for L_p zonoids of even isotropic measures

We strengthen the volume inequalities for L-p zonoids of even isotropic measures and for their duals, which are originally due to Ball, Barthe, and Lutwak, Yang, and Zhang. The special case p = infinity yields a stability version of the reverse isoperimetric inequality for centrally symmetric convex...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Böröczky Károly, (ifj.)
Fodor Ferenc
Hug Daniel
Dokumentumtípus: Cikk
Megjelent: 2019
Sorozat:TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY 371 No. 1
doi:10.1090/tran/7299

mtmt:3275048
Online Access:http://publicatio.bibl.u-szeged.hu/18285
Leíró adatok
Tartalmi kivonat:We strengthen the volume inequalities for L-p zonoids of even isotropic measures and for their duals, which are originally due to Ball, Barthe, and Lutwak, Yang, and Zhang. The special case p = infinity yields a stability version of the reverse isoperimetric inequality for centrally symmetric convex bodies. Adding to known inequalities and stability results for the reverse isoperimetric inequality of arbitrary convex bodies, we state a conjecture on volume inequalities for L-p zonoids of general centered (non-symmetric) isotropic measures.
Terjedelem/Fizikai jellemzők:505-548
ISSN:0002-9947