Atomistic dynamics of elimination and nucleophilic substitution disentangled for the F- + CH3CH2Cl reaction

Chemical reaction dynamics are studied to monitor and understand the concerted motion of several atoms while they rearrange from reactants to products. When the number of atoms involved increases, the number of pathways, transition states and product channels also increases and rapidly presents a ch...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Meyer Jennifer
Tajti Viktor
Carrascosa Eduardo
Győri Tibor
Stei Martin
Michaelsen Tim
Bastian Björn
Czakó Gábor
Wester Roland
Dokumentumtípus: Cikk
Megjelent: 2021
Sorozat:NATURE CHEMISTRY 13 No. 10
Tárgyszavak:
doi:10.1038/s41557-021-00753-8

mtmt:32333766
Online Access:http://publicatio.bibl.u-szeged.hu/22660
LEADER 02652nab a2200313 i 4500
001 publ22660
005 20211014085144.0
008 211014s2021 hu o 0|| Angol d
022 |a 1755-4330 
024 7 |a 10.1038/s41557-021-00753-8  |2 doi 
024 7 |a 32333766  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Meyer Jennifer 
245 1 0 |a Atomistic dynamics of elimination and nucleophilic substitution disentangled for the F- + CH3CH2Cl reaction  |h [elektronikus dokumentum] /  |c  Meyer Jennifer 
260 |c 2021 
300 |a 977-981 
490 0 |a NATURE CHEMISTRY  |v 13 No. 10 
520 3 |a Chemical reaction dynamics are studied to monitor and understand the concerted motion of several atoms while they rearrange from reactants to products. When the number of atoms involved increases, the number of pathways, transition states and product channels also increases and rapidly presents a challenge to experiment and theory. Here we disentangle the dynamics of the competition between bimolecular nucleophilic substitution (S(N)2) and base-induced elimination (E2) in the polyatomic reaction F- + CH3CH2Cl. We find quantitative agreement for the energy- and angle-differential reactive scattering cross-sections between ion-imaging experiments and quasi-classical trajectory simulations on a 21-dimensional potential energy hypersurface. The anti-E2 pathway is most important, but the S(N)2 pathway becomes more relevant as the collision energy is increased. In both cases the reaction is dominated by direct dynamics. Our study presents atomic-level dynamics of a major benchmark reaction in physical organic chemistry, thereby pushing the number of atoms for detailed reaction dynamics studies to a size that allows applications in many areas of complex chemical networks and environments.As the number of atoms involved in a reaction increases, so do the experimental and theoretical challenges faced when studying their dynamics. Now, using ion-imaging experiments and quasi-classical trajectory simulations, the dynamics of the polyatomic reaction F- + CH3CH2Cl have been studied and the competition between bimolecular nucleophilic substitution and base-induced elimination has been disentangled. 
650 4 |a Kémiai tudományok 
700 0 1 |a Tajti Viktor  |e aut 
700 0 1 |a Carrascosa Eduardo  |e aut 
700 0 1 |a Győri Tibor  |e aut 
700 0 1 |a Stei Martin  |e aut 
700 0 1 |a Michaelsen Tim  |e aut 
700 0 1 |a Bastian Björn  |e aut 
700 0 1 |a Czakó Gábor  |e aut 
700 0 1 |a Wester Roland  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/22660/1/NatChem_13_977_2021.pdf  |z Dokumentum-elérés