A Pharmaceutical Paradigm for Cardiovascular Composite Risk Assessment Using Novel Radiogenomics Risk Predictors in Precision Explainable Artificial Intelligence Framework Clinical Trial Tool /

Cardiovascular disease (CVD) is challenging to diagnose and treat since symptoms appear late during the progression of atherosclerosis. Conventional risk factors alone are not always sufficient to properly categorize at-risk patients, and clinical risk scores are inadequate in predicting cardiac eve...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Saba Luca
Maindarkar Mahesh
Khanna Narendra N.
Johri Amer M.
Mantella Laura
Laird John R.
Paraskevas Kosmas I.
Ruzsa Zoltán
Kalra Manudeep K.
Fernandes Jose Fernandes E.
Chaturvedi Seemant
Nicolaides Andrew
Rathore Vijay
Singh Narpinder
Fouda Mostafa M.
et al
Dokumentumtípus: Cikk
Megjelent: 2023
Sorozat:FRONTIERS IN BIOSCIENCE-LANDMARK 28 No. 10
Tárgyszavak:
doi:10.31083/j.fbl2810248

mtmt:34434920
Online Access:http://publicatio.bibl.u-szeged.hu/29105
LEADER 03091nab a2200397 i 4500
001 publ29105
005 20231215134907.0
008 231215s2023 hu o 0|| Angol d
022 |a 2768-6701 
024 7 |a 10.31083/j.fbl2810248  |2 doi 
024 7 |a 34434920  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a Angol 
100 1 |a Saba Luca 
245 1 2 |a A Pharmaceutical Paradigm for Cardiovascular Composite Risk Assessment Using Novel Radiogenomics Risk Predictors in Precision Explainable Artificial Intelligence Framework  |h [elektronikus dokumentum] :  |b Clinical Trial Tool /  |c  Saba Luca 
260 |c 2023 
300 |a 24 
490 0 |a FRONTIERS IN BIOSCIENCE-LANDMARK  |v 28 No. 10 
520 3 |a Cardiovascular disease (CVD) is challenging to diagnose and treat since symptoms appear late during the progression of atherosclerosis. Conventional risk factors alone are not always sufficient to properly categorize at-risk patients, and clinical risk scores are inadequate in predicting cardiac events. Integrating genomic-based biomarkers (GBBM) found in plasma/serum samples with novel non-invasive radiomics-based biomarkers (RBBM) such as plaque area, plaque burden, and maximum plaque height can improve composite CVD risk prediction in the pharmaceutical paradigm. These biomarkers consider several pathways involved in the pathophysiology of atherosclerosis disease leading to CVD.This review proposes two hypotheses: (i) The composite biomarkers are strongly correlated and can be used to detect the severity of CVD/Stroke precisely, and (ii) an explainable artificial intelligence (XAI)-based composite risk CVD/Stroke model with survival analysis using deep learning (DL) can predict in preventive, precision, and personalized (aiP3) framework benefiting the pharmaceutical paradigm.The PRISMA search technique resulted in 214 studies assessing composite biomarkers using radiogenomics for CVD/Stroke. The study presents a XAI model using AtheroEdgeTM 4.0 to determine the risk of CVD/Stroke in the pharmaceutical framework using the radiogenomics biomarkers.Our observations suggest that the composite CVD risk biomarkers using radiogenomics provide a new dimension to CVD/Stroke risk assessment. The proposed review suggests a unique, unbiased, and XAI model based on AtheroEdgeTM 4.0 that can predict the composite risk of CVD/Stroke using radiogenomics in the pharmaceutical paradigm. 
650 4 |a Klinikai orvostan 
700 0 1 |a Maindarkar Mahesh  |e aut 
700 0 1 |a Khanna Narendra N.  |e aut 
700 0 1 |a Johri Amer M.  |e aut 
700 0 1 |a Mantella Laura  |e aut 
700 0 1 |a Laird John R.  |e aut 
700 0 1 |a Paraskevas Kosmas I.  |e aut 
700 0 1 |a Ruzsa Zoltán  |e aut 
700 0 1 |a Kalra Manudeep K.  |e aut 
700 0 1 |a Fernandes Jose Fernandes E.  |e aut 
700 0 1 |a Chaturvedi Seemant  |e aut 
700 0 1 |a Nicolaides Andrew  |e aut 
700 0 1 |a Rathore Vijay  |e aut 
700 0 1 |a Singh Narpinder  |e aut 
700 0 1 |a Fouda Mostafa M.  |e aut 
700 0 1 |a et al.  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/29105/1/Saba.pdf  |z Dokumentum-elérés