On the variance of the mean width of random polytopes circumscribed around a convex body

Let be a convex body in in which a ball rolls freely and which slides freely in a ball. Let be the intersection of i.i.d. random half‐spaces containing chosen according to a certain prescribed probability distribution. We prove an asymptotic upper bound on the variance of the mean width of as . We a...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Bakó-Szabó Alexandra
Fodor Ferenc
Dokumentumtípus: Cikk
Megjelent: 2024
Sorozat:MATHEMATIKA 70 No. 4
Tárgyszavak:
doi:10.1112/mtk.12266

mtmt:35140959
Online Access:http://publicatio.bibl.u-szeged.hu/35063
LEADER 01418nab a2200229 i 4500
001 publ35063
005 20241107103657.0
008 241107s2024 hu o 000 eng d
022 |a 0025-5793 
024 7 |a 10.1112/mtk.12266  |2 doi 
024 7 |a 35140959  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a eng 
100 2 |a Bakó-Szabó Alexandra 
245 1 3 |a On the variance of the mean width of random polytopes circumscribed around a convex body  |h [elektronikus dokumentum] /  |c  Bakó-Szabó Alexandra 
260 |c 2024 
300 |a 13 
490 0 |a MATHEMATIKA  |v 70 No. 4 
520 3 |a Let be a convex body in in which a ball rolls freely and which slides freely in a ball. Let be the intersection of i.i.d. random half‐spaces containing chosen according to a certain prescribed probability distribution. We prove an asymptotic upper bound on the variance of the mean width of as . We achieve this result by first proving an asymptotic upper bound on the variance of the weighted volume of random polytopes generated by i.i.d. random points selected according to certain probability distributions, then, using polarity, we transfer this to the circumscribed model. 
650 4 |a Matematika 
700 0 1 |a Fodor Ferenc  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/35063/1/Mathematika-2024-BakoSzabo-Onthevarianceofthemeanwidthofrandompolytopescircumscribedaroundaconvexbody.pdf  |z Dokumentum-elérés