PICASO Set Operator for Computational Nephropathology

BACKGROUND: The advent of digital nephropathology offers the potential to integrate deep learning algorithms into the diagnostic workflow. We introduce PICASO, a novel permutation-invariant set operator to dynamically aggregate histopathologic features from instances. We applied PICASO to two nephro...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Zare Samira
Vo Huy Q
Altini Nicola
Bevilacqua Vitoantonio
Rossini Michele
Pesce Francesco
Gesualdo Loreto
Turkevi-Nagy Sándor
Becker Jan Ulrich
Mohan Chandra
Van Nguyen Hien
Dokumentumtípus: Cikk
Megjelent: 2025
Sorozat:KIDNEY360 6 No. 3
Tárgyszavak:
doi:10.34067/KID.0000000668

mtmt:35845538
Online Access:http://publicatio.bibl.u-szeged.hu/36284
LEADER 03332nab a2200349 i 4500
001 publ36284
005 20250416133806.0
008 250312s2025 hu o 000 eng d
022 |a 2641-7650 
024 7 |a 10.34067/KID.0000000668  |2 doi 
024 7 |a 35845538  |2 mtmt 
040 |a SZTE Publicatio Repozitórium  |b hun 
041 |a eng 
100 1 |a Zare Samira 
245 1 0 |a PICASO Set Operator for Computational Nephropathology  |h [elektronikus dokumentum] /  |c  Zare Samira 
260 |c 2025 
300 |a 441-450 
490 0 |a KIDNEY360  |v 6 No. 3 
520 3 |a BACKGROUND: The advent of digital nephropathology offers the potential to integrate deep learning algorithms into the diagnostic workflow. We introduce PICASO, a novel permutation-invariant set operator to dynamically aggregate histopathologic features from instances. We applied PICASO to two nephropathology scenarios: detecting active crescent lesions in sets of glomerular crops with IgA nephropathy and case-level classification for antibody-mediated rejection (AMR) in kidney transplant.; METHODS: PICASO is a Transformer-based set operator that aggregates features from sets of instances to make predictions. It utilizes initial Histopathologic Vectors as a static memory component and continuously updates them based on input embeddings. For active crescent detection in IgA nephropathy cases, we obtained 6206 Periodic acid-Schiff-stained (PAS) glomerular crops (5792 no Active Crescent, 414 Active Crescent) from three different health institutes. For the AMR classification, we have 1655 PAS glomerular crops (769 AMR and 886 Non-AMR images) from 89 biopsies. The performance of PICASO as a set operator was compared with other set operators such as DeepSet, Set Transformer, DeepSet++, and Set Transformer++ using metrics including area under the receiver operating characteristic curves (AUROC), area under the precision-recall curves (AUPR), recall, and accuracy.; RESULTS: PICASO achieved superior performance in detecting active crescent in IgA nephropathy cases, with an AUROC of 0.99 (95% confidence interval, 0.98 to 0.99) on internal validation and 0.96 (95% confidence interval, 0.95 to 0.98) on external validation, significantly outperforming other set operators (P<0.001). It also attained the highest AUROC of 0.97 (95% confidence interval, 0.90 to 1.0, P=0.02) for case-level AMR classification. The AUPR, recall, and accuracy scores were also higher when using PICASO, and it significantly outperformed baselines (P<0.001).; CONCLUSIONS: PICASO can potentially advance nephropathology by improving performance through dynamic feature aggregation. Copyright © 2025 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Society of Nephrology. 
650 4 |a Klinikai orvostan 
700 0 1 |a Vo Huy Q  |e aut 
700 0 1 |a Altini Nicola  |e aut 
700 0 1 |a Bevilacqua Vitoantonio  |e aut 
700 0 1 |a Rossini Michele  |e aut 
700 0 1 |a Pesce Francesco  |e aut 
700 0 1 |a Gesualdo Loreto  |e aut 
700 0 2 |a Turkevi-Nagy Sándor  |e aut 
700 0 2 |a Becker Jan Ulrich  |e aut 
700 0 2 |a Mohan Chandra  |e aut 
700 0 2 |a Van Nguyen Hien  |e aut 
856 4 0 |u http://publicatio.bibl.u-szeged.hu/36284/7/35845538.pdf  |z Dokumentum-elérés  
856 4 0 |u http://publicatio.bibl.u-szeged.hu/36284/1/35845538.pdf  |z Dokumentum-elérés