Gleason-Kahane-Żelazko theorems in function spaces
The Gleason–Kahane–Żelazko theorem states that a linear functional on a Banach algebra that is non-zero on invertible elements is necessarily a scalar multiple of a character. Recently this theorem has been extended to certain Banach function spaces that are not algebras. In this article we present...
Elmentve itt :
Szerzők: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2018
|
Sorozat: | Acta scientiarum mathematicarum
84 No. 1-2 |
Kulcsszavak: | Banach-algebra |
Online Access: | http://acta.bibl.u-szeged.hu/55812 |
Tartalmi kivonat: | The Gleason–Kahane–Żelazko theorem states that a linear functional on a Banach algebra that is non-zero on invertible elements is necessarily a scalar multiple of a character. Recently this theorem has been extended to certain Banach function spaces that are not algebras. In this article we present a brief survey of these extensions. |
---|---|
Terjedelem/Fizikai jellemzők: | 227-238 |
ISSN: | 0001-6969 |