Variable exponent perturbation of a parabolic equation with p(x)-Laplacian

This paper is concerned with the study of the global existence and the decay of solutions of an evolution problem driven by an anisotropic operator and a nonlinear perturbation, both of them having a variable exponent. Because the nonlinear perturbation leads to difficulties in obtaining a priori es...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Louredo Aldo Trajano
Miranda Manuel Milla
Clark Marcondes R.
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Laplace-egyenlet, Differenciálegyenlet
doi:10.14232/ejqtde.2019.1.60

Online Access:http://acta.bibl.u-szeged.hu/62284
Leíró adatok
Tartalmi kivonat:This paper is concerned with the study of the global existence and the decay of solutions of an evolution problem driven by an anisotropic operator and a nonlinear perturbation, both of them having a variable exponent. Because the nonlinear perturbation leads to difficulties in obtaining a priori estimates in the energy method, we had to significantly modify the Tartar method. As a result, we could prove the existence of global solutions at least for small initial data. The decay of the energy is derived by using a differential inequality and applying a non-standard approach.
Terjedelem/Fizikai jellemzők:1-14
ISSN:1417-3875