Variable exponent perturbation of a parabolic equation with p(x)-Laplacian

This paper is concerned with the study of the global existence and the decay of solutions of an evolution problem driven by an anisotropic operator and a nonlinear perturbation, both of them having a variable exponent. Because the nonlinear perturbation leads to difficulties in obtaining a priori es...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Louredo Aldo Trajano
Miranda Manuel Milla
Clark Marcondes R.
Dokumentumtípus: Folyóirat
Megjelent: 2019
Sorozat:Electronic journal of qualitative theory of differential equations
Kulcsszavak:Laplace-egyenlet, Differenciálegyenlet
doi:10.14232/ejqtde.2019.1.60

Online Access:http://acta.bibl.u-szeged.hu/62284
LEADER 01429nas a2200229 i 4500
001 acta62284
005 20210916104224.0
008 190930s2019 hu o 0|| zxx d
022 |a 1417-3875 
024 7 |a 10.14232/ejqtde.2019.1.60  |2 doi 
040 |a SZTE Egyetemi Kiadványok Repozitórium  |b hun 
041 |a zxx 
100 1 |a Louredo Aldo Trajano 
245 1 0 |a Variable exponent perturbation of a parabolic equation with p(x)-Laplacian  |h [elektronikus dokumentum] /  |c  Louredo Aldo Trajano 
260 |c 2019 
300 |a 1-14 
490 0 |a Electronic journal of qualitative theory of differential equations 
520 3 |a This paper is concerned with the study of the global existence and the decay of solutions of an evolution problem driven by an anisotropic operator and a nonlinear perturbation, both of them having a variable exponent. Because the nonlinear perturbation leads to difficulties in obtaining a priori estimates in the energy method, we had to significantly modify the Tartar method. As a result, we could prove the existence of global solutions at least for small initial data. The decay of the energy is derived by using a differential inequality and applying a non-standard approach. 
695 |a Laplace-egyenlet, Differenciálegyenlet 
700 0 1 |a Miranda Manuel Milla  |e aut 
700 0 1 |a Clark Marcondes R.  |e aut 
856 4 0 |u http://acta.bibl.u-szeged.hu/62284/1/ejqtde_2019_060_001-014.pdf  |z Dokumentum-elérés