Multiparameter Abelian ergodic theorems of Chacon-Báez-Duarte type
We prove a multiparameter Llogk L generalization of the Báez– Duarte Abelian ergodic theorem for positive linear contractions on L1, which allows the application of the local convergence principle of Sucheston’s type. Next we establish a new weighted Abelian ratio ergodic theorem for Dunford– Schwar...
Elmentve itt :
Szerző: | |
---|---|
Dokumentumtípus: | Cikk |
Megjelent: |
2020
|
Sorozat: | Acta scientiarum mathematicarum
|
Kulcsszavak: | Matematika |
Tárgyszavak: | |
doi: | 10.14232/actasm-019-757-4 |
Online Access: | http://acta.bibl.u-szeged.hu/69367 |
Tartalmi kivonat: | We prove a multiparameter Llogk L generalization of the Báez– Duarte Abelian ergodic theorem for positive linear contractions on L1, which allows the application of the local convergence principle of Sucheston’s type. Next we establish a new weighted Abelian ratio ergodic theorem for Dunford– Schwartz operators on L1 with modulation by Besicovitch sequences. Moreover, this (one-parameter) result is generalized to the case of multiparameter operator averages, which allows the application of Fava’s maximal ergodic inequality. |
---|---|
Terjedelem/Fizikai jellemzők: | 167-182 |
ISSN: | 2064-8316 |