Petrović-type inequality via fractional calculus

Inequalities play an important role in pure and applied mathematics. In particular, Petrović inequality is an important inequality which have several interesting generalizations. In this work we prove a new Petrović-type inequality for measurable functions defined on a space with finite measure, and...

Teljes leírás

Elmentve itt :
Bibliográfiai részletek
Szerzők: Kórus Péter
Nápoles Valdés Juan Eduardo
Rodríguez José Manuel
Sigarreta Almira José María
Dokumentumtípus: Cikk
Megjelent: 2024
Sorozat:MISKOLC MATHEMATICAL NOTES 25 No. 2
Tárgyszavak:
doi:10.18514/MMN.2024.4366

mtmt:35621679
Online Access:http://publicatio.bibl.u-szeged.hu/37077
Leíró adatok
Tartalmi kivonat:Inequalities play an important role in pure and applied mathematics. In particular, Petrović inequality is an important inequality which have several interesting generalizations. In this work we prove a new Petrović-type inequality for measurable functions defined on a space with finite measure, and we apply it to generalized Riemann–Liouville-type integral operators.
Terjedelem/Fizikai jellemzők:819-828
ISSN:1787-2405